If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2=16
We move all terms to the left:
2b^2-(16)=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $
| 124-2x=96 | | 107=(4x+7) | | 35x-25=40+15x | | 7/8r-1/2=3/16r+5 | | 2^(6x+1)=45 | | 4x+6=2-8 | | x-8=0 | | 150-1.5r=200-2.5r | | X+5=-4x+-7 | | z+30=46 | | 209=134-y | | 45+y=92 | | a/14=-8 | | 3(x-4)-2x=20 | | 5z=75;z= | | 20+x=42 | | y-29=95 | | 5x+8=4-4 | | (3x-3)=(6x+1) | | ⅕x=100 | | 7=y+3+(y+2) | | 10(1+3x)+90=-20 | | 4x-12=2+50 | | X/4=23x= | | 6z−2=–2+6z | | 11-4=6+x | | 8x+4(x+8)=32 | | 3(2x+5)=18.6 | | 2(11.95)+13.95x=121.55 | | r-43=2;r= | | -4.7x+8=-3.7x-2 | | 0.33(x-8)=6 |